If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2=13+28
We move all terms to the left:
6m^2-(13+28)=0
We add all the numbers together, and all the variables
6m^2-41=0
a = 6; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·6·(-41)
Δ = 984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{984}=\sqrt{4*246}=\sqrt{4}*\sqrt{246}=2\sqrt{246}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{246}}{2*6}=\frac{0-2\sqrt{246}}{12} =-\frac{2\sqrt{246}}{12} =-\frac{\sqrt{246}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{246}}{2*6}=\frac{0+2\sqrt{246}}{12} =\frac{2\sqrt{246}}{12} =\frac{\sqrt{246}}{6} $
| Y²-6x²=25 | | d=6{10}+17.7 | | 3x2+18x+10=0 | | X³-y³=218 | | 11+6(n-3)=-25 | | x^2–2x=-1 | | 100=b+b+b/2+b/4+1 | | 104=13*x | | 30=3x=12 | | 100=X+x+x/2+x/4+1 | | H=3x^2-5 | | 100=x+x+x/4+1 | | (1-7i)(-6+7i)=0 | | 9y^2+30y-28=0 | | 15x+4+75+41=120 | | 15x+4+75+41=160 | | 15x+4+75+41=90 | | 15x+4+75+41=360 | | 15x+4+75+41=60 | | 3x+1+47=60 | | 3/4(x+6)=15 | | (7x+2)²+6(7x+2)=27 | | -3x+23.9=4.7 | | 2-2x-7=18 | | 9x-17=4x+18 | | 2x=(x+80( | | 2x=(x+80) | | 2x^2-9x=10 | | 24x-0.08x2=0 | | 9x-9=4x=3(x-6) | | F(x+3)=-3x^2+2x-4 | | -F(x)=-3x^2+2x-4 |